7,112 research outputs found

    Remote Sensing of Evaporation

    Get PDF
    Evaporation of water from the Earth's surface into the atmosphere is central to the terrestrial energy, water and carbon cycle. Remote sensing approaches to measure evaporation (ET) combine observable inputs to the energy and water balance within statistical or process-based methodologies. These ET products draw on satellite observations from across the electro-magnetic spectrum. The ET retrievals are grouped in two main categories. One category includes approaches that combine meteorological descriptions of potential evaporation with a range of strategies to estimate evaporative stress. A second category includes surface energy balance approaches that retrieve latent heat from the thermal signatures. For each category a practical implementation example is described, including an outlook on progress towards multi-model assessment of global evaporation

    Uncertainties in Evapotranspiration Estimates over West Africa

    Get PDF
    An evapotranspiration (ET) ensemble composed of 36 land surface model (LSM) experiments and four diagnostic datasets (GLEAM, ALEXI, MOD16, and FLUXNET) is used to investigate uncertainties in ET estimate over five climate regions in West Africa. Diagnostic ET datasets show lower uncertainty estimates and smaller seasonal variations than the LSM-based ET values, particularly in the humid climate regions. Overall, the impact of the choice of LSMs and meteorological forcing datasets on the modeled ET rates increases from north to south. The LSM formulations and parameters have the largest impact on ET in humid regions, contributing to 90% of the ET uncertainty estimates. Precipitation contributes to the ET uncertainty primarily in arid regions. The LSM-based ET estimates are sensitive to the uncertainty of net radiation in arid region and precipitation in humid region. This study serves as support for better determining water availability for agriculture and livelihoods in Africa with earth observations and land surface models

    Tumor growth instability and the onset of invasion

    Full text link
    Motivated by experimental observations, we develop a mathematical model of chemotactically directed tumor growth. We present an analytical study of the model as well as a numerical one. The mathematical analysis shows that: (i) tumor cell proliferation by itself cannot generate the invasive branching behaviour observed experimentally, (ii) heterotype chemotaxis provides an instability mechanism that leads to the onset of tumor invasion and (iii) homotype chemotaxis does not provide such an instability mechanism but enhances the mean speed of the tumor surface. The numerical results not only support the assumptions needed to perform the mathematical analysis but they also provide evidence of (i), (ii) and (iii). Finally, both the analytical study and the numerical work agree with the experimental phenomena.Comment: 12 pages, 8 figures, revtex

    Assessment of the Impact of Spatial Heterogeneity on Microwave Satellite Soil Moisture Periodic Error

    Get PDF
    An accurate temporal and spatial characterization of errors is required for the efficient processing, evaluation, and assimilation of remotely-sensed surface soil moisture retrievals. However, empirical evidence exists that passive microwave soil moisture retrievals are prone to periodic artifacts which may complicate their application in data assimilation systems (which commonly treat observational errors as being temporally white). In this paper, the link between such temporally-periodic errors and spatial land surface heterogeneity is examined. Both the synthetic experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity, temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the polar-orbiting satellites) can lead to spurious high frequency spectral peaks in soil moisture retrievals. In addition, the global distribution of the most prominent and consistent 8-day spectral peak in the Advanced Microwave Scanning Radiometer - Earth Observing System soil moisture retrievals is revealed via a peak detection method. Three spatial heterogeneity indicators - based on microwave brightness temperature, land cover types, and long-term averaged vegetation index - are proposed to characterize the degree to which the variability of land surface is capable of inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day periodic errors are generally consistent with those exhibiting relatively higher heterogeneity indicators. This implies a causal relationship between spatial land surface heterogeneity and temporal periodic error in remotely-sensed surface soil moisture retrievals

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    A natural Finsler--Laplace operator

    Full text link
    We give a new definition of a Laplace operator for Finsler metric as an average with regard to an angle measure of the second directional derivatives. This definition uses a dynamical approach due to Foulon that does not require the use of connections nor local coordinates. We show using 1-parameter families of Katok--Ziller metrics that this Finsler--Laplace operator admits explicit representations and computations of spectral data.Comment: 25 pages, v2: minor modifications, changed the introductio

    Realization of odd-frequency p-wave spin-singlet superconductivity coexisting with antiferromagnetic order near quantum critical point

    Full text link
    A possibility of the realization of the p-wave spin-singlet superconductivity (ppSS), whose gap function is odd both in momentum and in frequency, is investigated by solving the gap equation with the phenomenological interaction mediated by the antiferromagnetic spin fluctuation. The ppSS is realized prevailing over the d-wave singlet superconductivity (ddSS) in the vicinity of antiferromagnetic quantum critical pint (QCP) both on the paramagnetic and on the antiferromagnetic sides. Off the QCP in the paramagnetic phase, however, the ddSS with line-nodes is realized as \textit{conventional} anisotropic superconductivity. For the present ppSS state, there is no gap in the quasiparticle spectrum everywhere on the Fermi surface due to its odd frequency. These features can give a qualitative understanding of the anomalous behaviors of NQR relaxation rate on CeCu2_2Si2_2 or CeRhIn5_5 where the antiferromagnetism and superconductivity coexist on a microscopic level.Comment: 20 pages with 12 figures. To appear in J. Phys. Soc. Jpn. Vol. 72, No. 1

    Returning children home from care: What can be learned from local authority data?

    Get PDF
    International Human Rights and child rights conventions as well as U.K. wide legislation and guidance require that children in care should be returned home to one or both parents wherever possible. Reunification with parents is the most common route out of care, but rates of re‐entry are often higher than for other exit routes. This study used 8 years of administrative data (on 2,208 care entrants), collected by one large English local authority, to examine how many children were returned home and to explore factors associated with stable reunification (not re‐entering care for at least 2 years). One‐third of children (36%) had been reunified, with adolescent entrants being the most likely age group to return home. Three quarters (75%) of reunified children had a stable reunification. In a fully adjusted regression model, age at entry, being on a care order prior to return home, staying longer in care, being of minority ethnicity, and having fewer placements in care were all significant in predicting chances of stable reunification. The results underline the importance of properly resourcing reunification services. The methods demonstrate the value to local authorities of analysing their own data longitudinally to understand the care pathways for children they look after
    corecore